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A simple instability mechanism by which water waves can extract energy
from a shear flow is isolated. A cubic equation is derived which provides the
instability criteria and the growth rate. This mechanism is effective only if the
surface drift velocity exceeds the minimum wave speed, which is approximately
23 cm/s in water, and only if the drift layer thickness exceeds a minimum value
which is comparable with the unstable wavelength. In the situation of a suffi-
ciently strong wind blowing over a flat calm, this mechanism is triggered early
in the development stage, and appears to dominate the initial growth stages of
centimeter waves.
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I. Introduction

In recent work, Milinazzo & Saffman (1989) have studied the effect of a thin drift layer

on the properties of finite amplitude capillary-gravity waves of permanent form on deep

water. It was noticed that for certain values of the parameters, i.e. wavelength, surface

tension, gravity, there were no real solutions for waves of small amplitude. The existence

of complex wave speeds means that the waves are unstable, and in particular if the wave

speed is complex for very small wave heights, it means that the plane interface is unstable

to disturbances with wavelengths in the range for which steady solutions do not exist.

In the present paper, we investigate this instability directly by considering the case

of infinitesimal waves of wavelength A on a drift layer of thickness A containing vorticity

-fl. It is convenient to formulate the problem as one of steady motion in which the wave

speed c is rea Imaginary roots of the equation for c correspond to unstable disturbances

growing like rkCt , where k = 27r/A and c = Imc.

We then follow closely the notation of Milinazzo & Saffman. The shape of the upper

interface HI(x), the stream function l'(z, y) in the drift layer, the shape of the lower

interface between the drift layer and the irrotational flow H2 (z), and the stream function

in the irrotational fluid %P2 (z,y) are

H, = c1 cos kz,

= fly2 + (aiek + biekV) cos kz,

H12 = -A + el cos kx,

q12 = -cy + dieky cos kx + const.

The boundary conditions, that the interfaces are streamlines and that the pressure is

continuous across them, are linearised and applied on y = 0 and / = -A. The calculation

is straightforward and details of the manipulations are omitted. After some algebra we
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obtain a cubic equation for 0 = (c - flA)/co,

+ 2 (q + -18(l e-2q/)) + e (-I + 15q - 1#2(1 - e-2q/)) - q + C( - -2ql/) - 0,

(1.2)

where

q -, 1 -n c, g+ 2, (1.3)
-, F2rrf0  2 ir A A

The wave speed c = (+ q)c,. Note that if q = 0, we obtain c/co = ±1 and c = 0. If

1 = 0, q > 0, then c/c0 = q ± 1 and c = 0. Also, q -- -q corresponds to 0 --+ -0.

The curious and unexpected feature of the equation for c is that there is a range of

values of q and 1 for which c is imaginary. This means that given (I and A, the plane

interface is spontaneously unstable to disturbances of wavelength A such that the values of

q and 1 fall in the unstable region shown in figure 1. This region is calculated as follows

Take
a=1,

b = (q + 180 - e-2/))z ,q-1,82(l _e-2q/l) (.4

d -q + 21q - e - e2/)(.

H=aE-b2 , G-=a 2 d-3abE+2b3 . (1.5)

Then
D~ . 1) = (G2 +4H 3 )a 2  (1.6)

is the discriminant of the cubic. The roots are real if D < 0. If D > 0, there are two

imaginary roots. When D = 0, the equation has two equal roots -vr--ffsgn G. Instability

occurs for those values of A for which

D OA > 0. (1.7)

The instability boundary in figure 1 is the locus D(q,1#) = 0. The wedge of instability

has asymptotes q - (31)1/3 and q - 1.831. The wedge is exponentially thin near its tip,

where it asymptotes the line 13 = q - 1.
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The dimensional growth rate of the instability is

= 2irfOi = %/'37rfolQ + H/QJ, (1.8)

where 8i = Im , 0 r = Re 0, and

-1 = (-G +/G 2-+4H3 ). (1.9)

The phase speed is

cp = u + CA = u - bco - lco(Q - H/Q). (1.10)

The transition from real to imaginary wave speeds is associated with the coalescence

of two of the real speeds. It is found that it is the two smaller speeds which coincide, so the

unstable waves will propagate somewhat slower than the propagating wave mode which

has phase speed u - bc 0 + co(Q - H/Q).

A situation close to that examined here has been studied by Voronovich, Lobanov &

Rybak (1980), the difference being that they have a vortex sheet at the lower boundary of

the wind drift layer. They identify a bubble of instability associated with the coalescence

of eigenvalues when the vortex sheet is weak (compare MacKay & Saffman 1986), but for

reasons that are not understood the instability seems to disappear when the vortex sheet

strength vanishes.
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2. Results

The wedge in figure 1 shows that there is no instability unless q > 1, i.e. u flA > Cm,

where cm = (4gT)1/ 4 is the minimum phase speed and occurs when A = A,, 27r/T7/ .

Thus this mechanism will not produce waves until u exceeds a critical value. Note that

this criterion is independent of the air density and air motion.

Suppose now that u is fixed gieater than c"). When, for example, the drift layer is

caused by wind, a typical value of u is 30 cm/sec (4% of mean wind speed U of 15 knots

at a height of 10in). For g = 981 cm/sec2 and T = 72 dynes/cm, Cr, = 23 cm/sec and

AM = 1.7 cm. For each value of A, such tLat

U > co(A) > Cm, (2.1)

the value of q = u/co is greater than 1, and hence there is instability if A is such that

0 = uA/(27rc0 A) lies in the unstable range shown in figure 1. The range of A given by

(2.1) is

Am., Am) [(U/Cm)2 + M/(u r)4 -] >A > Am, [(U/Cm) - /(U/c, -] An

(2.2)

It is more convenient for the interpretation of the results to suppose that u/cm, is given

and examine the range of A in which unstable waves exist for a range of values of A/Am.

In figure 2, we show plots of the range of A/Am vs A/Am for which there is instability.

It can be seen that there is no instability unless A exceeds a minimum Acrit. Also shown

is the point of maximum dimensionless growth rate amax/fm, where f, = cm/Am is the

frequency of the minimum speed capillary gravity wave , and the contour where the growth

rate is one-half of the maximum.

The depondence of Acrt/Am, A+/,,, Amax/Am, and Amin/Am is shown in figure 3(a).

The superfix + denotes values at the point of maximum growth rate, crit refers to values at

the nose where A = Acrit. Figure 3(b) shows the variation of A+/Amn and Acrit/Am,. Figure

3(c) shows the phase speeds and the growth rates. It can be shown that as u/cm - 1,
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Act/A, 1 ~- 2(u/cm - 1), At/m 1/27r(u/c,,, - i)-' and ... /f,,, is exponentially

small. The phase speed of the unstable modes approaches zero as u/cm - 1, and the

phase speed of the stable mode at the critical point aproaches 2c,m. This is consistent with

the idea that the drift layer convects the waves with a velocity u, and the instability can

be thought of as a choking of the modes propagating against the drift layer.
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3. Application to the generation of waves by wind

These results apply to the generation of waves by wind where the wind-induced surface

drift velocity u is greater than the minimum wave speed of 23 cm/s. Note that even after

the wind speed criterion is met, the instability requires the drift layer to exceed a minimum

thickness, the value of which is dependent on wind speed and decreases with increasing

wind speed. For a given wave length, there is also a maximum drift layer thickness beyond

which the mechanism disappears, so that the amplification of each wavelength is confined

to a specific growth stage.

Another interesting characteristic of this mechanism is that it is indirect: the wave

extracts energy from the wind drift layer which in turn receives energy from the wi,.J.

This is in contrast with other wind-wave generation mechanisms such as that proposed by

Phillips (1957) and Miles (1957).

Adopting the empirical relationship that u = 0.04U, where U is the wind speed mea-

sured at 10 m above water, the critical wind speed for the present instability mechanism to

take effect would be U - 6 m/s. A model can be constructed for the development of waves

under wind due to this mechanism which can be compared with laboratory experiment.

Consider the situation where the water surface is initially flat and at t = 0 the wind is

turned on. At wind speeds greater than 6 m/s, the drift layer is expected to be turbulent

and grow like A = ru.t, where u. is the friction velocity in the air typically having a value

of about 4% of the wind speed at 10 m and ic is an empirical constant taken by Baum

(1977) to be x = 0.25Vp/.7p = 8.3 10 - 3 , where Pa is the air density. When the drift layer

thickness exceeds the minimum thickness, the surface will become unstable to this mech-

anism. As the wind drift layer continues to thicken, a broader spectrum of waves become

unstable, and the most unstable wavelength lengthens, see figure 2. Further thickening of

the wind drift layer w:l1 result in the instability separating into two regimes, one for waves

longer than the wave with minimum wave speed (gravity branch) and the other for waves

shorter (capillary branch), with the growth in the gravity branch dominating. However,

since the growth rate decreases as the wind drift layer thickens beyond A- (see figure 2),
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this mechanism is expected to eventually give way to other processes of wave growth, such

as the Miles mechanism or nonlinear wave-wavc interactions.

As an example, we take U = 10 m/s, so that u. = u =- 40 cm/s and u/cm = 1 • 73.

From figure (3b), the minimum drift layer thickness is approximately 3.4 mm. This would

take less than 1 second to establish. The development of an initial spectrum due to this

instability mechanism is modelled by the equation

da (A, t)
dt , _ (A, t) a(A, t), (3.1)

where a(A, t) is the amplitude of the Fourier coefficient of the spectrum of wavelength A.

Note that with u, A and A = A(t) given, a(A,t) is determined from equation (1.8).

Figure 4 shows the wavenumber spectrum at various stages of development from back-

ground noise (10-8) for u/cm- 2 from t = 0 sec to t = 4 sec. The instability first

appears at about 0.8 sec. By t = 2 sec, the spectral peak has grown by nearly 8 decades,

and has downshifted from k = 700/m (near Acrit) to k = 380/m (near Am). Subsequent

development becomes one of gradual spreading of the spectrum towards lower wavenum-

bers, but the spectral peak remains unchanged at about the wavenumber corresponding

to the wavelength of minimum wavespeed. The rate of spectral development is a sensitive

fln( tin of it a.s well as of be rate er tl cYkening of th drift layer, both of which have to

be related to wind speed empirically. This is another reminder that the present model is

intended for illustrative purposes only, and not as a proposed prediction for wind wave

dcvel',irert, A more realistic model should at least account for the depletion of energy

from the shear layer as well as various wave dissipation mechanisms.

As a further illustration of the naure and affect of the instability mechanism, results of

an integration showing the amplification factor A(A) of a Fourier coefficient and the time

T(A) to restabilization are shown in figure 5 for the case u/cm = 2.0. T(A) is the time at

which the mode of wavelength A stabilises according to the assumed linear increase of the

drift layer thickness, and A is given by

A(A) = exp (j (X,t) dt) . (3.2)
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The amplification factor is very sensitive to the rate of growth of the drift layer. According

to the numerical results,

log Am. - 2.8 10 2 ua+A,/Cc2), Tm = 0.54A/(ICKu), (3.3)

where ,,, refers to the wavelength which is amplified most by the process. This wavelength

is found numerically to be close to A,.
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4. DiscussiCI

The presence of this instability appears to have been first noticed by Valenzuela (1976)

who performed a numerical study of the Orr-Sommerfeld equation for a coupled shear flow.

He concluded: "When shear flow in the water is included a significant increase in the growth

rates is obtained, in particular for wind speeds in excess of 6 m/s." We consider that the

main contribution of our present work is to expose the inviscid, hydrodynamic structure of

this instability, and to provide relatively simple and explicit formulae to permit the study

of its dependence on various parameters which may alter the wind drift layer.

Experimental support of this mechanism can be found in the repo:t of Huang, Bliven

and Long (1988) on laboratory study of generation of waves by wind from a flat calm.

They found that when the wind speed is higher than a threshold value of around 6 m/sec,

the growth of waves becomes spontaneous (see their figures 3.6 and 3.10). They also

proposed that the phenomena must be due to an instability mechanism, and the Kelvin-

Helmhotz instability was suggested as a possible candidate, but a detailed comparison was

not made. The critical air speed for the Kelvin-Helmholtz instability is UKH = N/=CM -"

6.4 m/sec. The phase speed of the Kelvin-Helmholtz unstable waves is Pa U/p. When

applied to the case of generation of waves by wind, the minimum wind speeds required and

phase speeds of the unstable waves for the present mechanism and the Kelvin-Helmholtz

instability are comparable, but the two mechanisms are fundamentally different. First, the

Kelvin-Helmholtz instability predicts the growth rate to increase with wavenumber, unlike

the present one which is highly selective in wavelength and actually predicts a wavelength

of maximum instability for a given drift speed and drift layer thickness. Second, the present

mechanism predicts a shifting towards longer waves with time (frequency downshifting)

due to the thickening of the wind drift layer to which the Kelvin-Helmholtz mechanism

is not sensitive. Third, the present mechanism does not rely on air density or motion,

and applies equally to -0tuations where the drift is generated by other means. Finally,

our analysis also yields stable propagating waves in the presence of the instability which

are absent in the Kelvin-Helmholtz analysis. Yet we do not see any reason why these two
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mechanisms can.,ot coexist.

The fact that the present mechanism responds to the drift current rather than to

the air-water shear flow gives it additional implications. For example, if the near surface

current structure, associated with longer waves, shear flows or internal waves, is such that

it selectively enhances or reduces the vorticity and/cr the drift layer thickness, then it

will be reflected by the differential growth of the waves under this mechanism. This has

particular relevance to ocean remote sensing by high-frequency synthetic apertue radar

which relies on a rapid response of short waves to current structure. The simplicity of

the present approach allows related mechanism, such as the effects of surfactants and the

"iestruction of short wind waves by long waves, to be examined by simple models.
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Figure captions

Figure 1. The wedge of instability in the q - 3 plane.

Figure 2. Range of unstable wavelengths and contours of constant growth rate vs drift

layer thickness for varying drift velocity. (a) u/c, = 1.25. (b) U/Cm = 1.5. (c) u/cm =

1.75. (d) u/c,m = 2.0. + denotes the location of the maximum growth rate. Interior contour

gives locus of the growth rate of one-half the maximum.

Figure 3. Dependence of critical tit and maximum + growth rate values on u/Cm. (a)

Wavelength behaviour. (b) Drift layer depth. (c) Maximum growth rate and phase speeds.

Figure 4. Development of a wavenumber spectrum from background noise for u/cm = 2.

Power is plotted against wavenumber at intervals of 0.2 sec.

Figure 5. Amplification factor and growth lifetime of Fourier coefficients for a linearly

growing drift layer vs wavelength for u/cm = 2. Scales are given by equation (3.3).
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